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Abstract

The viscous flow around a circular cylinder was investigated by means of a particle method over a wide Reynolds num-
ber range, from 0.0001 to 1000. A special care was devoted to the satisfaction of the no-slip condition which was expressed
through a fourth order partial differential equation for the stream function according to the method initially proposed by
Achdou and Pironneau. This equation was solved by a boundary integral method which simultaneously satisfied a Dirich-
let and a Neumann condition. The algorithm was immersed within a particle method framework and results in a versatile
method which can deal with relatively high Reynolds numbers as well as Stokes flows. The numerical results were analysed
and compared to those obtained by others numerically, experimentally and even theoretically for the low Reynolds number
limit. The behaviour of the method for the two extreme cases was specially investigated.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we are interested in the simulation of flows with very low Reynolds numbers by means of
particle methods. This is not a straightforward application for particle methods which are essentially known
to be particularly efficient for the simulation of transport phenomena. However, this is not the only interest of
these methods which are also grid-free, thus, well suited to the case of complex or moving boundaries. Our
long term objective is to compute flows in porous media at the pore scale for cases where the inertia effects
can be of some importance. Therefore, we were looking for a method which can deal with a large range of
Reynolds numbers and possibly reproduces an actual Stokes flow. One of our problems was the derivation
of proper numerical boundary conditions.

In the boundary integral formulation for the Stokes problem, the normal and tangential boundary condi-
tions are simultaneously solved through the use of the stokelet Green function. Splitting these conditions may
still be possible and is actually used for some solution procedures with grid methods. However, this is at the
expense of an additional error unless an iterative procedure is used.
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For two-dimensional flows, it can be argued that the satisfaction of one of the two boundary conditions is
sufficient to enforce the no-slip condition. Although this is true for the exact formulation, this solution is not
satisfactory for the discrete problem where it corresponds to the reduction of the full matrix of the linear sys-
tem to its diagonal.

Therefore, it was found desirable to try to solve the two boundary conditions at once: this was the main
objective of the work reported hereafter.

The use of particle methods for the simulation of Navier–Stokes flows had to deal with two main difficul-
ties: first, the discretisation of the diffusion differential operator and second, the satisfaction of boundary
conditions. These two problems were successfully addressed in Chorin�s pioneering work [11] where 2D
Navier–Stokes equations for flows around cylinders were solved. Chorin�s method made use of two main
ingredients: the simulation of diffusion by means of a random walk and the splitting of the no-slip condition
into two independent boundary conditions. As a result of this last point, the two conditions arising separately
for each component of the velocity were never simultaneously satisfied which was actually the case for the
most part of numerical methods for incompressible flows. By the end of the 1980s, that is more than 10 years
later, the PSE method was introduced [10,16,19] as an alternative to the random walk.

After further improvements, it turn out that the PSE method was by far preferable to the previous
random vortex method (RVM) for many reasons. The first one is the possibility to derive numerical schemes
of arbitrary high order [20]. This is an important point since the only way to improve the accuracy of the
RVM is to increase the particle numbers and the computational cost accordingly. An other drawback of the
RVM is the intrinsic impossibility to combine the method with any re-griding procedure whereas this has
been found one of the more efficient way to improve both stability and accuracy of a vortex method [23,15].
A last reason is the difficulty to extend the RVM to three-dimensional flows [21] whereas it is straightfor-
ward for the PSE method [15]. These points have been convincingly demonstrated by ample published
results [17,35].

However, the satisfaction of boundary conditions still made use of a splitting into separate conditions for
the two velocity components. The difficulty was to find a proper boundary integral equation for these condi-
tions since boundary integral methods appeared as the natural tool for works with particle methods. Different
alternatives were proposed [24,30,22] all of these using the splitting technique. In the meantime, Chorin him-
self has brought his first method to a higher degree of sophistication, introducing a specific discretisation for
the boundary layer by means of vortex sheets [12]. This last method has been successfully applied to many
cases of academic and practical flows in the last 20 years although there are still needs for theoretical works
for both accuracy improvements and extension to 3D flows.

The emergence of fast vortex solvers in the last decade enabled particle methods to deal with more realistic
geometries and it soon appears that the ability of particle methods to accurately transport a given vorticity
field made it a very serious candidate for the simulation of complex separated flows. The basis of particle
methods was still more or less the same: a combination of Chorin�s boundary conditions splitting and the
PSE method. However, decisive improvements were brought and a lot of problems had been solved in order
to reach the maturity of today�s particle methods. Among the most significant were the works by Koumoutsa-
kos and Leonard [27] who introduced an approximate boundary integral formulation, Cottet and Poncet [17]
who used modified smoothing function in the wall region and Winckelmans [34,35] who improved the wall
treatment with a very careful account for the vorticity flux at the wall.

Beside this computational effort, the theoretical analysis of particle methods was carried further by math-
ematicians and proof of convergence was made available for inviscid [4,14] and viscous [5,16,19] unbounded
flows. The case of boundary conditions still remained a problem, one reason for that being the difficulty of
deriving explicit boundary conditions for vorticity. However, some progress were also made in this direction
concerning both formulation [33] and discretisation [32] and new ideas were more recently introduced by Ach-
dou and Pironneau [1,2] and later on by Salvi [37]. In these works, the Navier–Stokes equations rather than
the boundary condition itself were split into a diffusion equation and a convective part. Expressing the diffu-
sion equation for the stream function yields a fourth order equation which implies two boundary conditions
for both components of the velocity, namely one Dirichlet and one Neumann boundary condition. The homo-
geneous equation can be expressed as a boundary integral equation which can be solved numerically. The Ach-
dou Pironneau Salvi formulation will be denoted APS formulation hereafter.
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In the present work, this method has been implemented within the framework of particle methods. One
interesting feature of this method is that it was found to converge to Chorin�s original splitting for the case
of vanishing viscosity [37]. This point will be checked hereafter, as well as the opposite case of increasing vis-
cosity for which the boundary integral formulation will be shown to converge, at least numerically, to that of a
Stokes flow.

2. The APS formulation

Let D the computational domain, the APS formulation is based on the 2D Navier–Stokes equations
expressed in a stream function–vorticity formulation (w,x):
ox
ot

þ divððr � wÞxÞ ¼ 2

Re

Dx with Re ¼
DU1

m
;

Dw ¼ �x;
ð1Þ
together with the boundary conditions on fixed solid walls hereafter denoted oD
w ¼ 0 and
ow
on

¼ 0; ð2Þ
where Re is the Reynolds number, R = D/2 is a characteristic length of the walls, U1 is the free-stream veloc-
ity, m denotes the kinematic viscosity, o/on is the normal derivative and n is the outer normal at the boundary
oD. The APS formulation aims at concentrating the boundary conditions treatment into one single fourth or-
der equation for the stream function. In order to derive this equation, a two steps procedure was used. The
first step consists in a splitting of the vorticity transport equation into a convective and a diffusive part, accord-
ing to a scheme which has been widely used within the framework of particle methods:
ox
ot

þ divððr � wÞxÞ ¼ 0; ð3Þ

ox
ot

� 2

Re

Dx ¼ 0. ð4Þ
At each time step, a combination of these two equations was sequentially solved. The resulting scheme was
found to approximate the original equation with an error which is proportional to udt to a certain power
depending on the time integration scheme used [5].

At this stage, the boundary conditions have not been addressed yet. The first equation is a purely convective
equation for the vorticity field and can be easily solved by means of particle methods. The second equation will
be further modified. This is the purpose of the second step which consists in the substitution of Dw for x in the
second equation yielding:
o

ot
Dw� 2

Re

D2w ¼ 0. ð5Þ
This equation can be solved together with appropriate initial conditions and the boundary conditions (2).
To achieve the goal, Eq. (5) will now be solved. A semi-discrete form was used in order to transform equa-

tion (5) into a generalised Helmholtz equation. We first need to discretise the time derivative. Using a crude
first order Euler scheme, the following form was obtained at each time step:
ðgD2 � DÞwnþ1 ¼ f ðwnÞ; ð6Þ

where g is a constant equal to 2dt=Re and f a function of w computed at the previous time step. The solution of
this fourth order elliptic problem can be obtained by using a boundary integral formulation together with the
Green function for the 2D generalised Helmholtz problem
NðxÞ ¼ 1

2p
log jxj þ K0

jxjffiffiffi
g

p
� �� �

; ð7Þ
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where K0 is the modified Bessel function of the zero kind. Using this Green function and substituting xn for
f(wn), we get an integral representation for wn+1
wnþ1ðxÞ ¼ g
Z
oD

q2ðx0ÞNðx� x0Þ � q1ðx0Þ oN
on0

ðx� x0Þ
� �

dx0 �
Z
D

xnðx0ÞNðx� x0Þdx0. ð8Þ
It can be observed that w consists in two parts denoted, respectively, wc and wx where:
wnþ1
c ðxÞ ¼ g

Z
oD

q2ðx0ÞNðx� x0Þ � q1ðx0Þ oN
on0

ðx� x0Þ
� �

dx0; ð9Þ

wnþ1
x ðxÞ ¼ �

Z
D

xnðx0ÞNðx� x0Þdx0; ð10Þ
where q1 and q2 are solutions of the following set of boundary integral equations 8x 2 oD:
� ownþ1
x
on

ðxÞ ¼ g
R
oD

q2ðx0Þ oN
on

ðx� x0Þ � q1ðx0Þ o2N
onon0 ðx� x0Þ

� �
dx0;

�wnþ1
x ðxÞ ¼ g

R
oD

q2ðx0ÞNðx� x0Þ � q1ðx0Þ oN
on0 ðx� x0Þ

� �
dx0.

8<
: ð11Þ
This set of integral equations can be rewritten using a matrix form as
gAq ¼ g with A ¼ � o2N
onon0

oN
on

� oN
on0 N

" #
; q ¼

q1
q2

� 	
and g ¼ � ownþ1

x
on

�wnþ1
x

" #
. ð12Þ
This vorticity is related to the stream function through the Poisson equation
x ¼ �Dw; ð13Þ

so that it is the solution of the Helmholtz problem:
ðI � gDÞxnþ1 ¼ xn. ð14Þ

It is worth noting that this is an implicit scheme. This is important since it provides a useful stability property
for the Stokes problem solution. An other consequence is the modification of the Green functions to be used
which are based on Bessel�s functions rather than the usual Gaussian corresponding to a second order diffu-
sion equation. Therefore, the vorticity diffusion computation far from the boundary can be achieved either
using the PSE method or a modified PSE in which the Bessel Green function has been substituted to the
Gaussian.

An integral representation of x can be easily derived using the Green function of this last problem which
will be denoted Kg hereafter
KgðxÞ ¼ 1

2p
K0

jxjffiffiffi
g

p
� �

. ð15Þ
We get
xnþ1ðxÞ ¼
Z
oD

q1ðx0Þ oK
g

on0
ðx� x0Þ � q2ðx0ÞKgðx� x0Þ

� �
dx0 þ 1

g

Z
D

xnðx0ÞKgðx� x0Þdx0. ð16Þ
Taking the curl of the stream function yields the velocity field
unþ1ðxÞ ¼ g
Z
oD

q2ðx0ÞrotNðx� x0Þ � q1ðx0Þrot oN
on0

ðx� x0Þ
� �

dx0 �
Z
D

xnðx0ÞrotNðx� x0Þdx0. ð17Þ
All these results can be found with more details in [2] or [37].
This is by no mean the only way to solve Eq. (5) together with conditions (2) and other mesh free methods

such as the capacitance matrix method [8,31] exist. One interesting feature of the APS formulation is that it
provides almost at no additional cost the corresponding vorticity field which is very useful for the coupling
with the vortex particle method.
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3. Particle discretisation of the APS formulation

In this section, the discretisation of Eqs. (3), (4) and (11) by means of particle methods is considered. We
start with the numerical solution of Eq. (11), assuming that wx is known. The integrals were discretised by
using an approximation of oD consisting of a set of small segments Sk. The exact Green function is used
and the two terms q1 and q2 are approximated by means of piecewise constant functions. On each segment
Sk, the constant values of q1 and q2 are, respectively, denoted qk1 and qk2. The following approximations for
the integrals were used:
Z

oD

qiðx0ÞUðx� x0Þdx0 ’
X
k

qki dlkUðx� xkÞ with i ¼ 1; 2; ð18Þ
where U stands for any one of the functions: N; oN=on; oN=on0 and o2N=onon0. The length and the mid-
dle of the segment Sk are, respectively, denoted dlk and xk. Substituting this discrete form in Eq. (11) yields a
set of linear equations for the actualised approximations qk1 and qk2.

We turn now to the vorticity transport equation. Vortex particles were defined by their strength and loca-
tion denoted, respectively, Xi and xi for particle Pi. Particle methods are based on the use of Lagrangian coor-
dinates thus the convection equation reduces to the following equation:
dv
dt

¼ uðv; tÞ; ð19Þ
where v is the Lagrangian coordinate which can be substituting by the particle location xi. The time integra-
tion scheme of Eq. (19) which will be used in the calculations is the second order accurate Runge–Kutta
scheme.

Once the boundary integral equation (11) has been solved, q1 and q2 are known, the velocity and
the vorticity fields are readily obtained from the integral representation of the stream function (8). We
get:
uðxn
i ; t

nþ1Þ ¼
X
k

gdlk qk2rotNðxn
i � xkÞ � qk1rot

oN

on0
ðxn

i � xkÞ
� �

�
X
j

Xn
j rotNðxn

i � xn
j Þ ð20Þ
and
xðxn
i ; t

nþ1Þ ¼
X
k

dlk qk1
oKg

on0
ðxn

i � xkÞ � qk2K
gðxn

i � xkÞ
� �

þ 1

g

X
j

Xn
jK

gðxn
i � xn

j Þ; ð21Þ
where
rotNðxÞ ¼ 1

2pjxj ðx� ezÞ
1

jxj � K1

jxjffiffiffi
g

p
� �� �

; ð22Þ

rot
oN

on0
ðxÞ ¼ 1

2pjxj2
ðx� ezÞðx � n0Þ � 1

jxj2
þ 1

g
K0

jxjffiffiffi
g

p
� �

þ 1ffiffiffi
g

p jxjK1
jxjffiffiffi
g

p
� � !

þ 1

2pjxj2
ðx� n0Þðx � ezÞ

1

jxj2
� 1

jxjK1

jxjffiffiffi
g

p
� � !

ð23Þ
with K1 the modified Bessel function of the first kind.
It is worth to notice that the velocity field (20) represents the velocity induced by the whole flow vorticity

including the contribution of the perturbation at the solid wall due to the satisfaction of the no-slip condition.
This equation can be viewed as the usual Biot Savart law, with both contribution coming from the discrete
vorticity field and the solid boundary. The main difference is due to the Kernel N that includes the boundary
condition for the whole domain.

The vorticity is the sum of two components. The first one is a discrete form of the boundary integral rep-
resentation whereas the second is obtained by applying the PSE method [15] to the second term of this
equation
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Xnþ1
i ¼ Xn

i þ ri

X
k

dlk qk1
oKg

on0
ðxn

i � xkÞ � qk2K
gðxn

i � xkÞ
� �

þ
X
j

Xn
jri � Xn

i rj

� �
Kgðxn

i � xn
j Þ ð24Þ
with ri the surface of the particle Pi.

4. The inviscid flow limit

The case of small viscosity has been explored in details by Salvi [37] who was able to show that Chorin�s
method is the first term of an asymptotic expansion in power of g.

It is interesting to notice that a similar analysis cannot be derived for others methods [27,34]. As already
mentioned, these methods are based on an actual account for the diffusion equation and the connection
between the two velocity components that holds for two-dimensional flows. Therefore, they cannot be derived
by the simple application of a limit process concerning the viscosity only. Beside this, these methods can be
expected to have a wider application range due to a better account to the physics.

Although the complete analysis included account for the boundary curvature, a simplified presentation of
the method can be obtained by considering one expansion of the Green function (7) for small g. This expan-
sion is valid for any jxj � ffiffiffi

g
p

[7] so a careful analysis was conducted by Salvi in order to obtain a rigorous
proof of the following result. In the limit

ffiffiffi
g

p ! 0, the K0 function rapidly goes to zero thus yielding the first
order approximation for the Green function
NðxÞ ¼ N0ðxÞ þ
ffiffiffi
g

p
N1ðxÞ þ gN2ðxÞ þ � � � ¼ 1

2p
logðxÞ þ Oð ffiffiffi

g
p Þ.
Introducing this approximation into the matrix of Eq. (12) yields
A ¼ � o2N
onon0

oN
on

� oN
on0 N

" #
¼ � o2N0

onon0
oN0

on

� oN0

on0 N0

" #
þ Oð ffiffiffi

g
p Þ. ð25Þ
Thanks to the expression of N0, we eventually obtain
A0 ¼
1

2p

� 2ðn�rÞðn0 �rÞ
jrj4 þ n�n0

jr2j
n�r
jrj2

n0 �r
jrj2 log r

2
4

3
5. ð26Þ
Introducing now this approximation into the expression of wc and its normal derivative yields the following
integral representation:
wcðxÞ ¼
g
2p

Z
oD

q2ðx0Þ log jx� x0j þ q1ðx0Þ n
0 � ðx� x0Þ
jx� x0j2

 !
dx0 ð27Þ
and
owc

on
ðxÞ ¼ g

2p

Z
oD

q2ðx0Þ n � ðx� x0Þ
jx� x0j2

þ q1ðx0Þ n � n0

jx� x0j2
� 2ðn � ðx� x0ÞÞðn0 � ðx� x0ÞÞ

jx� x0j4

 ! !
dx0. ð28Þ
In these approximate forms, it is clear that q1 and q2 stand for the usual ‘‘doublet’’ and ‘‘source’’ distribu-
tions. For two-dimensional flows, it is well known that this problem does not have one unique solution
unless one of these functions takes a prescribed value at a given point. However, the matricial equation
can be solved iteratively by a splitting of the matrix into a diagonal part and an antisymmetric part. This
technique eventually yields a method which is quite identical to Chorin�s original method [11] as pointed out
by Salvi [37].

5. The Stokes flow limit

In this section, the case when g ! 1 is considered. The Green function N of the generalised Helmholtz
problem can be expressed as an expansion of jxj= ffiffiffi

g
p

power yielding
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NðxÞ ¼ � 1

8p
ðlog jxj � 1Þ jxjffiffiffi

g
p
� �2

� 1

128p
log jxj � 3

2

� �
jxjffiffiffi
g

p
� �4

þ 1

2p
ðlogð2Þ

þ logð ffiffiffi
g

p Þ � cÞ 1þ jxj
2
ffiffiffi
g

p
� �2

þ jxj
2
ffiffiffiffiffi
2g

p
� �4

 !
þ O

jxjffiffiffi
g

p
� �6

; ð29Þ
where c = 0.5772156 is the Euler constant. The previous expansion for the Green function can be rewritten
NðxÞ ¼ 1

2p
ðlogð2Þ � cÞ � 1

8p
jxj2ððlog jxj � 1Þ � ðlogð2Þ � cÞÞ�

� 1

128p
jxj4 log jxj � 3

2

� �
� ðlog 2� cÞ

� �
�2 þ Oðlog �; � log �; �2 log �; �3 log �; �3Þ; ð30Þ
where � = 1/g is a small parameter. The first term of this expansion is a constant and does not have any inci-
dence on the derivatives of the stream function. The second one is the Green function of the actual Stokes
problem multiplied by 1/g
NsðxÞ ¼ � jxj2

8p
log jxj � 1ð Þ. ð31Þ
Introducing this form in the matrix of Eq. (12) yields for the first term of the Green function expansion for
large g that is for either high viscosity or large time step
A0 ¼ � 1

8pg

2ðn�xÞðn0 �xÞ
jxj2 þ ðn � n0Þð2 log jxj � 1Þ ðn � xÞð2 log jxj � 1Þ

ðn0 � xÞð2 log jxj � 1Þ jxj2ðlog jxj � 1Þ

" #
; ð32Þ
which is a Oð1=ð ffiffiffi
g

p
log gÞÞ approximation ofA for large g. The basic matrix of the boundary integral equation

for Stokes flows can be easily recognised.

6. Numerical results

6.1. Initialisation of simulations

In order to test the proposed adaptation of the APS formulation within the framework of particle methods,
we simulate the impulsively started flow around a circular cylinder at different Reynolds numbers
Re ¼ 2U1R=m with R the radius of the cylinder and U1 the free-stream velocity. This flow is interesting
because it has been extensively studied and many suitable references are available for comparison. In a first
test, our results have been compared to those of two different methods by Koumoutsakos et al. [27] and Daube
[18] for a moderate Reynolds number Re ¼ 550. Somewhat higher values Re ¼ 1000 was used in a second test
in order to verify the convergence to Chorin�s original splitting which has been pointed out in Section 4. A last
test concerns the case of the Stokes flow limit of Section 5 for which separate tests have also been performed
for the boundary integral equation alone. In the three tests, we have computed diagnosis such as the stream
function w, the drag coefficient Cd, the vorticity x and the vorticity flux ox/on at the walls. The drag coefficient
was defined as
Cd ¼
2

Re

Z 2p

0

x� ox
on

� �
sx dh. ð33Þ
Because of the impulsively started flow, a specific initialisation procedure had to be used. The method intro-
duced by Koumoutsakos et al. was used. At time t = 0�, particles were created around the cylinder on a crown
with thickness proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dt=Re

p
.

This crown was discretised with Mr particles layers. In our calculations, Mr was always equal to 20. The
total number of particles used for the crown discretisation is Mr · M where M is the number of segments
Sk used in the resolution of the boundary integral equation (see Fig. 1). This number was selected according
to the results of a refinement study conducted for different Reynolds number values (see Fig. 2 for an example
with Re ¼ 550). The values of the other numerical parameters used have been gathered in Table 1.
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Fig. 1. Example of a crown around the circular cylinder for the initialisation of particles.
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Fig. 2. Evolution with numerical parameter M of the vorticity x (top) and the vorticity flux ox/on (bottom) on the surface of the cylinder
oD for Re ¼ 550 from the present method.
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At this stage, these particles had no vorticity. The no-slip condition at the solid walls was not satisfied and
this initial flow has to be corrected. This correction was obtained through the distribution of the vorticity flux
onto the surrounding particles which initial weight was taken as



Table 1
Numerical parameters used for the simulations

Re dt g Nf M Mr Ninitial Nfinal rmini rmax

1000 0.05 0.0001 4 1000 20 2 · 104 119,472 2.6 · 10�5 7.4 · 10�5

550 0.05 0.00018 4 500 20 104 53,748 6.8 · 10�5 2.2 · 10�4

100 0.05 0.001 4 400 20 8 · 103 36,501 2.0 · 10�4 1.2 · 10�3

60 0.05 0.0017 4 400 20 8 · 103 36,363 2.6 · 10�4 1.7 · 10�3

40 0.05 0.0025 4 400 20 8 · 103 35,941 3.2 · 10�4 2.2 · 10�3

20 0.05 0.005 4 400 20 8 · 103 38,704 4.5 · 10�4 4.0 · 10�3

10 0.05 0.01 4 400 20 8 · 103 38,956 6.4 · 10�4 6.5 · 10�3

5 0.05 0.02 4 400 20 8 · 103 39,892 9.1 · 10�4 1.1 · 10�3

2 0.05 0.05 4 400 20 8 · 103 39,880 1.5 · 10�3 2.8 · 10�2

1 0.05 0.1 4 400 20 8 · 103 38,144 2.1 · 10�3 3.5 · 10�2

0.1 0.05 1 4 400 20 8 · 103 37,055 1.5 · 10�2 7.9 · 10�1

0.01 0.05 10 4 400 20 8 · 103 35,378 3.2 · 10�2 2.2
0.001 0.05 100 4 400 20 8 · 103 35,572 1.9 · 10�1 22
0.0001 0.05 1000 4 400 20 8 · 103 48,408 1.45 3.0 · 102
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p ðAk þ BkÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8dt=Re

p exp
�dx2

8dt=Re

� �
ð34Þ
with
Ak ¼ erf
dy þ dlk=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8=Redt
p

 !
; ð35Þ

Bk ¼ erf
dlk=2� dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8=Redt
p

 !
; ð36Þ

dx ¼ ðxi � xkÞsxk þ ðyi � ykÞsyk; ð37Þ
dy ¼ ðxi � xkÞsyk þ ðyi � ykÞsxk; ð38Þ
where sxk and syk are the components of the unit clockwise oriented tangent sk to the cylinder section at point
xk, that is a vector parallel to the segment Sk. The strength ck is given by
ck ¼ �ex � sk. ð39Þ

In particle methods, an overlapping condition must be satisfied to ensure the accuracy of the numerical sim-
ulations. Because of Lagrangian distortion induced by the flow, a re-griding procedure is then necessary. In
this work, the re-griding procedure introduced by Jollès and Huberson [23] was used.

6.2. Moderate Reynolds numbers

In this first test, the results of the particle method with the APS formulation have been compared to those
of Koumoutsakos et al. and Daube�s methods.

These two methods were selected because the first one is a reference vortex method whereas the second is a
finite differences method using the matrix influence method. A Reynolds number Re ¼ 550 was selected. It
corresponds to moderate Reynolds numbers for which the direct inversion of matrix A of Eq. (12) is possible.
The simulation was performed up to an adimensional time t = U1T/R = 7 with a time step dt = 0.05. A
re-griding frequency Nf = 4 was selected. The number M of segments Sk was fixed to 500.

In Figs. 3 and 4, the vorticity x obtained with the present method and Daube�s method has been plotted at
different times. Very similar solutions were obtained with the two methods although the iso-line are somewhat
smoother with the last one. This can be attributed to the larger viscous diffusion necessary to ensure the sta-
bility of finite difference methods. Moreover, the boundary conditions are not simultaneously solved in this
method which was essentially design to derive proper boundary conditions for the vorticity.
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The onset of a symmetrical recirculating zone attached to the cylinder in which a main and a secondary
eddies develop was obtained with the convenient respective diameters. Fig. 5 shows the time evolution of
the drag coefficient Cd for the present method and Koumoutsakos et al. method and we can observe that
the two methods give almost the same time evolution.

In this simulation, the final number of particles was 54,000 and the particles surfaces ri range from
6.8 · 10�5 to 2.2 · 10�4 (see Table 1).

In Fig. 6, the vorticity x and the vorticity flux ox/on on the surface of the cylinder oD have been reported
for both methods. For these two quantities, the present method gives values slightly lower than those obtained
by Koumoutsakos et al. As already mentioned, this is the most probable cause for the discrepancy observed on
the drag coefficient.

This point has been further examined for the early stage of the impulsively started flows for Re = 200,
for which case an analytical solution exists [13]. The results obtained were also compared to that of
Koumoutsakos (see Fig. 7). It was observed that, for suitable discretisation parameters (M > 600) the
two numerical methods gave almost the same results, both being slightly higher than the analytical solu-
tion. Also, we can verified that the friction and pressure drags are equally important at the beginning of
the motion.
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6.3. Higher Reynolds numbers

In these tests, the results of the present method have been first compared to those of Chorin�s first method
for the case of vanishing or, at least, weak viscosity. A Reynolds number Re ¼ 1000 was selected first. Two
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numerical simulations have been performed, one with the initial APS formulation and the other with the
asymptotic formulation of Section 4. As in the previous test, both methods were compared to Koumoutsakos
et al. and Daube�s methods. The simulations were performed up to an adimensional time t = 7 with a time step
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dt = 0.05. The re-griding frequency Nf remains unchanged. The number M of segments Sk was fixed to 1000.
Fig. 8 shows the stream function w at different times t = 1, 3, 5 and 7 after the impulsive start for the present
method with the initial APS formulation or the asymptotic APS formulation and Daube�s method. We can
observe that very similar results were obtained with the two APS formulations, both being close to Daube�s
results. In Fig. 9, the history of the drag coefficient Cd obtained with the present method equipped with the
initial and asymptotic APS formulation have been plotted together with Koumoutsakos et al. method. The
present results are in very good agreement with those of Koumoutsakos et al. for both cases.

Although it would be more comfortable and of great interest to know where the ‘‘exact’’ solution lies, it is
just possible to point out that the different solutions were obtained with different methods. Consequently, they
probably lie within the expected accuracy range of these methods. At time t = 5, the drag coefficient Cd was
found to be about 1.098 with the asymptotic APS formulation, 1.121 with the initial APS formulation and
1.097 with Koumoutsakos et al. method that is with a less than 0.1% gap between the first and the last meth-
ods which can be considered has the best possible choice at this Reynolds number. These results are also con-
sistent with the asymptotic analysis which validity is limited to the higher Reynolds numbers.

The vorticity x and the vorticity flux ox/on on the surface of the cylinder oD have also been reported for
the two APS formulations and Koumoutsakos et al. method in Fig. 10.

6.4. Low Reynolds numbers

The aim of this section is the study of the convergence of the present method for the case of increasing vis-
cosity. This has been achieved by considering flows with Reynolds numbers Re ranging from 0.0001 to 100.
The calculations have been performed up to an adimensional time t = 7 with a time step dt = 0.05. The re-
griding frequency Nf remains unchanged. For all these simulations, the number M of segments Sk was set
to 400.

First, the values of the drag coefficients obtained with the initial APS formulations and the asymptotic
approximation of Section 5 were reported in Table 2.

The reference solution was provided by two analytical curves for the drag coefficient. The first one for
Re < 0:01 is the well-known lamb solution [3]. For higher Re, an empirical law obtained through an identifi-
cation procedure based on experimental data by Chaplin [9] was used. It can be observed that the results of the
asymptotic formulation are closer to these references for Reynolds numbers up to 0.1.
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(discontinuous line).
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Table 2
Comparison of the drag coefficient Cd with the initial and asymptotic APS formulations

Re g Analytical solution Asymptotic APS formulation Initial APS formulation

1 0.1 10.32 No simulation 9.91 (3.92%)
0.1 1 56.12 No simulation 58.43 (4.11%)
0.01 10 3.810 · 102 3.696 · 102 (3%) 3.375 · 102 (11.43%)
0.001 100 2.821 · 103 2.644 · 103 (6.26%) 2.468 · 103 (12.5%)
0.0001 1000 2.242 · 104 2.140 · 104 (4.5%) 1.956 · 104 (12.76%)
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It can be attributed to the fact that the asymptotic formulation numerically solve the equation actually used
to derive the analytical solution. The difference between the asymptotic and full APS solutions is, therefore, a
measure of the asymptotic error made when substituting Stokes to Navier–Stokes equations for low Reynolds
numbers.

It is well known that the Stokes solution is the inner solution of a singular perturbation problem. As a
result, the asymptotic APS formulation which is based on an actual flow solver may be much closer to the
usual matched asymptotic expansion solution whereas the full APS formulation can be seen as a numerical
approximation of a uniformly valid solution. Beside this, it must be kept in mind that the difference between
the two methods is a numerical error rather than an exact measure of the difference between two analytical
solutions.

For higher Reynolds number, the initial APS formulation provides a better approximation.
For dt = 0.05 and Re ¼ 0:1, g is equal to 1 and can no longer be considered as a small parameter. This

upper limit was further tested by trying different combinations for the time step and the Reynolds number
giving the same value for g. The previous conclusion was confirmed by these calculations.
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The accuracy of the asymptotic formulation was also tested by comparing the computed value of the
drag coefficient Cd with other published theoretical, numerical and experimental results. A part of the theo-
retical results was obtained with the method of matched asymptotic expansion used by Kaplun [26]. The
other part was obtained with the already mentioned analytical solution given by Lamb [3]. The numerical
results are those of Lange et al. [28]. The experimental results obtained by Tritton [38] and Huner et al.
[25] were also used. All these results are plotted in Figs. 11 and 12. We can observe that the agreement
between the present results and all these well established theoretical, numerical and experimental results
is good.

Eventually, the stream lines at time t = 7 for different Reynolds numbers Re are shown in Fig. 13. In an
experimental study for Reynolds numbers Re > 4:4, Bouard and Coutanceau [6] observed a recirculating zone
in which one single eddy called main eddy develops. The present results support this conclusion. For Re < 1,
the computed stream lines were compared to the results obtained with the method of matched asymptotic
expansions used by Kaplun [26] and also Proudman and Pearson [36]. A numerical implementation of this
method by Leel and Leal [29] was used. All these methods gave almost identical results.
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Fig. 14. Particles location for three different low Reynolds number Re ¼ 0:01; 1 and 20 at t = 0 and 7.
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A particular aspect in these calculations is the particle location. For the lower Reynolds, the vorticity is
mainly diffused which means that the vorticity can reached relatively high values in the far field. Therefore,
a large number of particle was used, not only within the wake but also upstream where diffusion effects dom-
inate the convective effects. This is illustrated in Fig. 14 where the final particle locations have been reported
for three different Reynolds numbers.

An other important question concerning these low Reynolds number flows has been addressed. Two
asymptotic formulations have been derived from the APS formulation. The behaviour of these different for-
mulation regarding the Stokes flow approximation was also investigated. The results have been reported in
Fig. 15. It was observed that the convergence of the low Reynolds approximation is always faster than that
of the complete formulation and that the high Reynolds formulation converge to a slightly different value
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for the lower Reynolds. This can be attributed to the structure of the numerical algorithm which always neces-
sitates a transfer of the vorticity onto the moving particles, even in the present case where diffusion alone rep-
resents more than 99% of the vorticity transfer.

7. Conclusions

An algorithm originally derived by Achdou, Pironneau and further developed by Salvi [1,2,37] was adapted
to particle methods in order to improve the treatment of boundary conditions for low Reynolds number flows.
Two asymptotic formulations were also derived and implemented for the extreme cases of high and low Rey-
nolds numbers.

It was found that the method is almost as good as the best methods known up today while it still works for
very low Reynolds number as well. This last conclusion was supported by extensive comparisons with results
from various publications.

The high Reynolds approximation of the APS was found to be very similar to Chorin�s method by Salvi.
Applied within the same particle method framework to the same problem, it was found to provide results very
close to that of our reference particle method, even closer than that obtained by the original APS formulation.
The possibility to consider this method as the first term of an asymptotic expansion could provide a guide for
any improvement by computing the second or third order terms.
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Our last conclusion concerns the low Reynolds approximation. It has been demonstrated that the Stokes
integral solution can be substituted to the APS formulation in this case. As a result, low Reynolds number
flows including non negligible inertia effects can be simulated as a perturbation of a Stokes flow. Moreover,
a three-dimensional extension of the method can be easily derived thanks to the well developed theory of
boundary integral equation for three-dimensional Stokes flows.
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bidimensionnelles en formulation vitesse tourbillon, Ph.D. Thesis, Ecole polytechnique, 1999.

[38] D.J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech. 6 (1959) 547–567.


	From Navier - Stokes to Stokes by means of particle methods
	Introduction
	The APS formulation
	Particle discretisation of the APS formulation
	The inviscid flow limit
	The Stokes flow limit
	Numerical results
	Initialisation of simulations
	Moderate Reynolds numbers
	Higher Reynolds numbers
	Low Reynolds numbers

	Conclusions
	References


